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Computational Chaos May Be Due to a Single Local Error*
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Nonlinear ordinary differential equations and arbitrary difference
methods are considered which satisfy conditions for the convergence
of a sequence of true difference solutions. This convergence does
not prevent “diversions” of computed difference approximations, a
property which is defined here. The occurrence of diversions is
demonstrated in examples, namely the restricted three body problem
and the Lorenz equations. This occurrence is practically unpredictable.
In the applied literature, this property has been used to define
"{dynamical) chaos.” Therefore, observed chaos for solutions of ODEs
is not necessarily a consequence of a sensitive dependency on the
tnitial vector but, rather, may be due to a corresponding dependency on
computational errors.  © 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper, sysiems of nonlinear ordinary differential
equations (ODEs) are considered, namely,

for

y=f{y)
DR,

120, DRy

(L1)
yi={y, -y, ) RoR;

f is sufficiently smooth; an arbitrary initial vector
y(0) = yq € D is admitted. A true solution of the initial value
problem (IVP} {1.1) is denoted by y* = y*(1, yo).

A consistent and stable discretization of (1.1} yields a
family of finite-dimensional approximations, with the step
size h as the family parameter, e.g., [ 5, 43]. A true (discrete)
difference solution of any such system will be denoted by §,
or j. Starting from y,, an approximation j, deviates from
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»* because of the local discretization error. For any fixed
t>0, consistency (of order p) and stability imply the
pointwise convergence of a sequence { §,} to y* as A —0.
The global discretization error is a measure for the devia-
tion of 7, from y*. The usual estimate of this error is

Hy*Cto, yo)— Fulell
< cexp(Miy)
c=0(h") as

at any fixed

h—0,

to>0,

with (1.2)

and M is a Lipschitz constant of the discretization. For any
fixed A>0 and as ¢, increases, {1.2) becomes practicaily
useless.

The computer implementation of a discretization involves
additional approximations because of local rounding errors
and, perhaps, local procedural errors. Concerning any
true “difference solution™ §,, the corresponding computer-
generated “difference approximation” will be denoted by 7,
or §.

All local errors act as perturbations causing the
approximation 3, |, to be different from y*(tg, ¥o) [3]. As
will be discussed subsequently, this distance may be large
provided the ODEs or their discretization are “perturba-
tion-sensitive.” In particular, there may be “perturbation-
sensitive neighborhoods” (PSNs) in phase space, see
Section 3.

The existence of spurious (or extraneous or ghost)
difference solutions 7., , or, j, is well known, eg.
[15, 25, 41,47, 517. For arbitrary choices of y,e D, these
solutions do not approximate any true solution
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y*=y*(t, o) of (1.1). There are two types of solutions
ﬁsp,h .
(a) Jp.4is real-valued for all e (0, 2];

(b) as h—0, a sequence {J,} approaches a true solu-
tion y* = p*(1, yo); however, there is an increasing sequence
{h,} of bifurcation points k>0 generating a tree of
spurious paths ¥,, ,; generally, the qualitative properties of
the j,, , are different from the ones of the true solution y*.

Remarks: (1} lserles et al [25] have proved theorems
asserting the existence or the non-existence, respectively,
of spurious difference solutions for certain classes of
discretizations of ODEs.

(2) Stuart [46, 47] has proved the existence of spurious
periodic difference solutions for discretizations of a class of
nonlinear parabolic initial boundary value problems with
PDE w,=w, .+ AH{w, w_}.

{3) For many helpful suggestions, the authors express
their appreciation to an unknown referee.

2. DIVERTING DMFFERENCE APPROXIMATIONS

As an introduction to an extension of spurious difference
solutions, the following observation is made: for different
intervals of time and an arbitrary but fixed #> 0, at any
given time, a computed approximation ¥ is generally close
to different true solutions yf;,, y%,, ..., each belonging to one
out of a set of different initial vectors vy, Yo(2), -.- This is
irrelevant if the distance of y{;, and y¥, with j # i is small for
all ¢ of interest, which, e¢.g., may be true in the case that all
solutions y* possess the same monotonicity. The opposite is
generally true in the case of a problem in “chaotic
dynamics,” governed by the ODEs (1.1). As ¢ increases, the
“diversion” of § from p%, to p%, at t~1,, then to p¥, at
t %ty etc.,, may be important if || »¥%,(1) — y¥,(1)]| is large for
at least some ¢ > Max{z,, tj-}. In a situation of this kind, a
difference approximation j is said to divert. A diverting
difference approximation is spurious in an extended sense
since the composition of y§,, ¥%,, ... is not a true solution of
(1.1). Generaily, spurious difference solutions or diverting
difference approximations cannot be detected on the level
of the discretization. This detection may be possible if a
first integral of the ODEs (1.1} is known. Subsequently,
enclosure methods for the solutions y* of (1.1) will be used
for this detection, particularly for those dissipative ODEs
which do not possess a first integral.

3. ON (COMPUTATIONAL) CHAQOS

A famous example for case (b), addressed at the end of
Section 1, is the relationship between the set of solutions y*
of the Logistic ODE [22]
for t=0with y(0)e(0, 1)

Y =ay(l—y) (3.1)

ET AL.

and the set of difference solutions #f, of its explicit Eufer
discretization [36]

finj+1=Fulfin ;) with #, ;= ﬁh(fj},
Fh(ﬁh_j) = bﬁh‘j(l —ﬁk,,‘),

fin ;= (ha/b) T, ;, b:=14ah

This 1s a classical paradigm in the theory of dynamical
chaos; see, eg., [4,17,28,48]. In dependency on the
parameter b in (3.2), Li and Yorke [32] have postulated
that the “onset of chaos™ is at a certain b beyond the point
of accumulation of the sequence {#,} of bifurcation points.
This 1s arbitrary; in fact, there is no mathematical definition
of chaos, ¢.g., [16]. Since this is a global property of a set
of solutions, a sufficiently comprehensive definition would
be correspondingly difficult. In the mathematical literature
on mappings F:R? - R? with ¢=2 (e.g., [18,427), the
existence of a Aorseshoe map [ 167 is employed as an indica-
tion for the presence of chaos in a set of solutions.

For general, sufficiently smooth functions F, : I — R with
D <R, now approximations #, of true difference solutions
#, are considered. It is assumed that there is a 6. Rt such
that

|ﬁh,j+1*Fh('?h_j)|<5F for j=0(1)N—-1. (3.3)

The shadowing theorem by Chow and Palmer ([107; see
also [1173) asserts that

3

l’?k,j_ﬁh,jlgén(M9 o, T) for J‘=1(1)N

provided Mgt < 4. (3.4}

The constants M, o, te R* depend on TTy_; (F,(F,.)) ™"
and sup{F;(n}|ne [0, 1]}. For j=1{1)N, then, there is a
true difference solution #, that shadows its computed
approximation #,; see also [16]. For dissipative maps
F,: R? — R?, Hammel et af. [ 19, 20] propose the conjecture
that (qu\/a if N 1/\/5:. In view of a system (1.1) of
ODEs, the shadowing property for its discretizations is
almost useless; in fact, the local discretization error then is
not known quantitatively; i.e., there is no information on
the magnitude of .

In the theory of dynamical chaos, shadowing theorems
are considered to be of pivotal importance since they (seem
to} suggest a practical computability of the true solutions y*
in a chaotic set. This property will be denoted by “ODE-
chaos.” Concerning sets of solutions of ODEs, the existence
of a horseshoe map has been verified mathematically for a
few special ODEs [18, 427. The ODE for the periodically
excited pendulum is the only one of physical relevance.
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In particular, it is not known at present whether there are
“chaotic properties” in the sets of true solutions y* of the
following systems of nonlinear ODEs:

» the ones of celestial mechanics, a special case of which
is investigated in Section 5 (see aiso [26]) and

« the Lorenz equations which are discussed in Sections 6
and 7.

The system of ODEs (1.1) is now considered for the
special case of #=2. The following situation will be
discussed:

« in the phase space R? a segment of a straight line is
chosen, A :=[y,(0), y2)(0)]; with # the unit normal
vector of A, it is assumed that # - f(y) # 0 possesses a fixed
sign for all ye A;

= for all 1 > 0, then the true solutions ¥y, = y%,(#, ¥1,(0))
and pf, = y4,(4, y(2)(0)) bound the set of all true solutions
starting in the interval A; this defines a “function strip”
in R?;

» consequently, no solution y* can enter or leave this
strip for any 1 = Q.

This topographically simple structure of the set of solutions
in R* precludes chaotic properties in this phase space of
¥ =f(y). According to Ruelle and Takens (see [4]),
dimension three at least is necessary (and sufficient) for the
existence of chaos. Properties of this kind then may indeed
exist in the cases of

(i} any discretization of all these ODEs or

{(ii) the additional consideration of a periodic forcing
term in these ODEs.

Concerning (1), chaotic properties may be present even in
the case of discretizations of scalar ODEs (with n=1).

Concerning (i), the following periodically excited non-
linear ODEs have been investigated in the physical and the
mathematical literature (e.g., [167]), particularly in the
context of dynamical chaos:

+ the pendulum equation,

+ the Duffing equation,

« the Van der Pol equation and the Lorenz equations.

In the recent physical literature, there are numerous

references to “computational chaos” {e.g., [21, 35]). This
expression refers in particular to a situation where

« there are “chaotic properties” of computed difference
approximations J, serving as approximations of

» qualitatively or quantitatively known true solutions y*
possessing simple topographical structures.

As an example, (1.1) is considered in the cases of n=1 or
n=2 Then
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(2) the sets of true solutions are topographically simple,
however,

() sets of difference solutions 7, then may be
topographically complicated, and

(y) the computed difference approximations may

appear “chaotic.”

The mathematical reasons for () are obvious since the
discretizations

= depend on artificial parameters not present in the
ODEs and

+ they are perturbed by the omission of the terms
representing the local discretization error.,

Concerning the sets of solutions addressed in (2} and (S},
this relationship is qualitatively true for all (fixed) dimen-
sions e N in (1.1). In particular, there are the following
contributions to computational chaos:

» spurious difference solutions j, which, if present, ar¢ a
consequence of the omission of the local discretization
errors in the transfer from the ODEs to the discretization or

« computed diverting difference approximations J,
which, if present, may be caused by all kinds of local errors.

In fact, even a single local error may induce a diversion of
an individual computed approximation §,, as will be shown
in Section 7. Computational chaos is then expected to be
present in a phase space, provided sufficiently many
individual approximations 7, are affected by this property.

Remark. Concerning the shadowing theorem by Chow
and Palmer [10], it is observed that a diversion of §, from
y* is not implied by a violation of the required inequality
Mot < 4as Nincreases.

(Computational) Chaos is believed to be associated with
perturbation-sensitivities such that small causes exert large
influences. The causes are perturbations due to either

(A)
(B)
The corresponding deviations of. the solutions or their

approximations are the effecrs. A perturbation-sensitivity is
to be expected in subdomains of the phase space, where

changes of the initial vectors y, in phase space or
local numerical errors of any kind.

» the true orbits are {locaily) divergent such that
» the Lyapunov exponent [16] is (locally) positive.

This is the situation favoring diversions of computed
difference approximations j. Concerning the (spatial)
relationship of cause and effect, there are the following
two possibilities: either

(T) they occur in the same subdomain of the phase
space, or
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(II) the causes (A) or (B) take place at times before the
orbits enter the perturbation-sensitive neighborhood

(PSN), where the cffect takes place.

Examples for the actual occurrence of (1) and (II) are:

concerning (1), a pole of the ODEs in Section 5 (see also
[97)and

concerning (11), the approach of a saddle point possessing
stable and unstable manifolds, see Sections 6 and 7.

4. ON ENCLOSURE METHODS

An enclosure of a true solution p* of (1.1) consists of a
pair of (computed) bounds y and y such that

Yilt,yo) S yHL yo) < 7t vo)

for i=1(1)nand te[t,y,t.], (3.1)

where ||y — | ., is negligibly small for practical purposes,
with || .|| , denoting the supremum norm. For the following
reasons, these inequalities are true with respect to all
computational errors:

(x) discretization errors can be bracketed by means
of Lohner’s enclosure algorithms for ODEs ([33]; see
aiso [1])

(B rounding errors can be accounted for on the basis of
the Kulisch computer arithmetic [30];

{y) both («) and (#) can be exccuted automatically by
means of the following products of U. Kulisch and
coworkers: the computer languages PASCAL-SC [6] or
ACRITH-XSC [24] or PASCAL-XSC [27] or the sub-
routine library ACRITH [23] supporting FORTRAN.

On the level of (¢)-(y) and for an interval [#,, 1., ], a suc-
cessful completion of an enclosure verifies the existence of
the true soiution y*. This follows from the Banach and the
Brouwer fixed point theorems, both of which are employed
in the execution of ().

Remark. (1) These enclosure methods establish a
quantitative relationship between the function space of the
true solutions of the ODEs and the Euclidean spaces of their
discretizations.

"(2) The enclosure is automatically guided by the true
solution y*. Consequently, the local growth of the width of
the enclosure is a meaningful quantitative criterion for
Rufeger’s control of the step size A [37, 38].
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5. DIVERTING DIFFERENCE APPROXIMATIONS
IN THE RESTRICTED THREE
BODY PROBLEM

The following idealization of celestial mechanics is
considered [7, 12]:

(i) the orbits of the earth £ and the moon M are
confined to a plane in R?;

(ii) in this plane, there is a suitably rotating Cartesian
¥1-¥,-basis whose origin is attached to the center of gravity,
C, of E and M; subsequently, E and M are treated as mass
points; the points E, C, and M are on the y,-axis;

(ili) the position of C relative to E and M is determined
by the ratio ¢ =1/82.45 of the masses of M and E; conse-
quently, — u is the location of E and A4 := 1 — u is the one of
M, both on the y,-axis;

(iv) in the y,-y, plane, trajectories of a small sateliite §
are to be determined;

(vy for these trajectories, the phase space possesses the
Cartesian coordinates y,, v,, y5 := y; and y, := 5.

For the restricted three body problem defined by (i)-(v),
the equations of motion arc as follows [7,12] in the
employed rotating basis:

Yi=Yi y12=y4s
Yi=y1+ 20— Ay +w)/ri? — uly, = A, 51)
Vo= y2—=2vs— Ay [ri? — uy, /ri?,

ro=n Pty =y — AP+l

For any true solution y* = (y¥, y¥, v¥ »¥)7 of (5.1), the
Jacobi integral, J, takes a fixed value:

Ji=3(0ityi— yi-yD = AP —prd? (52)

In agreement with numerous papers in literature {(e.g.,
[7, 45]), the following point is chosen as an initial vector:

$,(0) :=(1.2,0, 0, —1.04935750983)T. (5.3)
P

With much more than graphical accuracy, numerous
applications of “high-precision” difference methods in
literature have yielded almost closed orbits J, whose
projections into the y,-y,-plane are displayed in Fig. 1.
These orbits appear to return to yp(()) at the time
t=T:=6.192169331396 [7]. Therefore, y,, is believed to be
an approximation of a hypothetlcal T-periodic solution yF
if (5.1) with period T T.
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FIG. 1. Projection into y,-v,-plane of difference approximation ;3,,
approximating true solution yF (restricted three body problem).

By means of a classical Runge-Kutta method [3, 437,
Rufeger [37, 38]:

(i) has reproduced published approximations ¥, of ¥y,
making use of a step size A= 1072 and

(ii) for #=5x107? she has computed the approxima-
tion, ,, depicted in Fig. 2.

For each one of the first four loops in Fig. 2, the Jacobi
integral, J, has been evaluated by means of y,. For each
individual loop, J changes by less than 10~°. Every time 7,
comes close to the pole E, J decreases by more than (.3, thus
suggesting a sequence of diversions of , close to E, each
taking place in approximately four consecutive time steps.
Close to E, now four initial vectors ,,, ..., #4, were chosen
as follows:

(a) they coincide with computed values of §_ such that

(b) 7, at 5, is beginning to traverse one of the first
three loops in Fig. 2. For each fixed 7, the true orbit pf¥,
starting at #,, was enclosed, making use of a step size con-

Yz

0.5 4

L l l 1
- T T T
G0 0 1.0 n

FIG. 2. Projection into y,-y,-plane of difference approximation fq
with multiple diversions (restricted three body problem).
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Y2

0.5+
¥y
a
0.5+
J S— : : —
10 a 10 n
FIG. 3. Enclosure of true solution y¥, (restricted three body problem).

trol developed in [37 or 387. Figure 3 depicts the enclosure
of y},. At 55, the computed approximation §, diverts from
y&, to the continuation of §, shown in Fig. 2. Consequently,
the occurrence of a diversion of the difference solution ﬁq
has been verified and its properties have been demonstrated.

The diversions observed here have been obtained by
means of the consistent and stable classical Runge—Kutta
method with the choice of k = 5 x 10~?, For true orbits with
a sufficiently small distance from the pole at £, diverting
difference approximations are to be expected even when
“high-precision” discretizations are employed. This conjec-
ture on the unpredictability of diversions is confirmed by the
subsequent discussion of the Lorenz equations.

Remarks. (1) The numerical anaiysis yielding Fig. 1-3
was executed on a PC “kws” using a PASCAL-SC compiler.
For a more detailed presentation of these results see
(2,37, 44].

(2) Swingby maneuvers of space vehicles are (e.g.,
{14]) executed in near neighborhoods of planets. Because
of the proximity of a pole of the ODEs (of celestial
mechanics), only the employment of enclosure methods can
reliably avoid diversions of computed orbits.

6. THE LORENTZ EQUATIONS, SOLUTIONS,
AND APPROXIMATIONS

The Lorenz equations are [40] (see also [317)

dy,/dt=0(y,—y,)

Y=f(pyesdyyfdt=ry — y,— y,y pa,
dysjdt=y,y,— by, (6.1)
¥s
yi=¥y2].  »o:=y0),
Y3



i
246

where b, r, 6 € R* are free parameters. There are three reai-
valued stationary points:

(i) forall b, r, s e R*, the origin (0, 0, 0)T and
(iil) for all b, r—1, eR™, the points C, and C, with
positions (£, £, r— 1)" € R?, where £ := +./b(r —1).

For r> 1, the stationary peint (0, 0, 0}7 is a saddle poini.

Consequently and because of the Center Manifold

Theorem, ie., there exist stable and unstable manifolds of

this point, both of which consist of true solutions y* of (6.1).
For special choices of b, r, o, either

()
or

(f) the set of solutions ¥* is known to possess simple
(“non-chaotic™) topographical structures.

y¥=y*¥(1, b, 1,0, y,) can be represented explicitly

For arbitrary b=206e¢R™" and re R™, we have found the
following equivalent representation of (6.1} (see the
Appendix):

yHe+)yi—o((r—1)—ce™*)y,

+3y1=0, (6.2)

Y3t} =z (3 ()Y = ce™,

with ¢ 1= y4(0) — (5:)(»:1(0)), (6.3)

CYit+ ya=yi()r— ys(2)) (6.4)

In the limit as r - oo, the phase space of (6.2) is two-dimen-
sional. As has been shown in Section 3, this preciudes
“chaotic” properties of the solutions y{f of (6.2) and, there-
fore, also of the system (6.1) as ¢ — o0, for any choices of
b=2o, reR*. Since (6.2)-(6.4) is a semi-coupled (equiva-
lent) representation of (6.1), the simple properties of the
solutions y* then are inconsistent with the existence of a
(chaotic) strange attractor as 1 — 0.

For several other choices of b, r, s e R, a large number
of difference approximations j (of solutions y*) have been
determined and published in the literature. In the preface
of his monograph [40] on the Lorenz equations (6.1),
C. Sparrow points out: “For some parameter values,
numerically computed solutions of the equations oscillate,
apparently forever, in the pseudo-random way we now
call ‘chaotic’.” Almost generally in the non-mathematical
literature, this property is tacitly assumed to hold for the set
of true solutions of (6.1}, Mathematically, there arises the
question whether this pseudo-randomness of difference
approximations § represents not only “computational
chaos” but also “ODE-chaos” (of the solutions of (6.1)).
This issue will be discussed in view of the possibility of
diverting difference approximations.

ADAMS ET AL.

7. DIVERTING DIFFERENCE APPROXIMATIONS
OF THE LORENZ EQUATIONS

For the choices b=%, r=28, and ¢=6 in (5.1) Kiihn
[29, 2, 37 has used

(a)

(b} enclosure methods.

several standard numerical methods and

Both (a) and (b) were executed by use of C compilers run-
ning on an HP-VECTRA. In the case of (b), a C compiler
has been used which was developed by Kithn [29]. By
means of {b), Kithn has verified the existence of five different
periodic solutions, p¥, of (6.1). Figure 4 depicts the projec-
tion into the y,-y, plane of a T-periodic orbit y}, where
[29,2,3]: (i) Te2.5942776279; (this denotes an interval),
(i) the following point {y,(0), y5(0), y,(0))T is on v

y1(0) € 10.9522832165,

{7.1)
v2(0) € 217160136858,

¥3(0) =20,
and (iii) the characteristic factors (Floquet multipliers) are

=1, i,=9.14122...,

Ay =14052... x [0~ 72)
Consequently, this orbit possesses tangent planes of two-
dimensional stable and unstable manifolds. This is also true
for the other periodic solutions which have been verified by
Kiihn.

Figure 5 depicts the projection into the y,-y, plane of an
aperiodic solution y* and its approximation ¥, both starting
at a point y,, close to ¥ in Fig. 4. In Fig. 5, (A) the enclosed
true solution y* is demarcated symbolically by boxes and
(B) the solid line represents a difference approximation §
which was determined by use of a classical Runge-Kutta
method with a step size hA=hy = 45. As y* and J have
(almost) reached the stationary point (0, 0, 0), they begin to
separate for the remainder of the interval [0, ¢, ] for which
they have been determined. This can be explained by the

304 Y2

-20 -15 -10 -6 0 5 10 15 20

FIG. 4. Projection inlo y,-y,-plane of T-periodic orbit y* (Lorenz
equations}).
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-20

FIG. 5. Projection into y,-v,-plane of enclosure of true solution p*
(O O O [1) and diverting difference approximation J ( ) (Lorenz
equations).

conjecture of a diversion of ¥ at the stable manifold of
(0, 0, 0), taking place before coming close to this point
(0, 0, 0). This diversion occurs presumably as y penetrates
the stable manifeld in one time step. It is remarkable that p*
and ¥ coincide with much more than graphical accuracy for
all 1[0, t,] in the case of the choices 4= 5tz < h, and
= &5 > hy. This unexpected non-monotonic dependency of
| y*(t)— F(1} ., on k is unpredictable.

For a starting vector y, close to the one in Fig. 4, Kiihn
found cases where y* and 3 are (&) practically coincident for
te[0, 1,110, 1,1, however, (#) their Euclidean distance
d = d{1) oscillates for 1 > t,, reaching values comparable with
the Euclidean distance of the stationary points C, and C,.
Property () can presumably be explained by a diversion of
¥, prior to t = t,, followed by (i) a certain winding pattern
of y* about €, and C, and (ii) a corresponding pattern of 7.
The time r, depends unpredictably on the employed numer-
ical method: in the four investigated cases, !, increased
from 13.5 to 28 as the step size h of a classical Runge-Kutta
method was-reduced or as the value chosen for the precision
£ of a Runge-Kutta method with control of / was lowered.

Remark. For a more detailed presentation of these
resuits see [29, 2, 3].

On the basis of a Taylor-polynomial of (variable) order p,
we have developed an explicit one-step method with a near-
optimal control of # and p by means of the following condi-
tions: (%) the moduli of each one of the three last terms of
the polynomial are required to be smaller than an ¢ with,
e.g, e=10"" and (B) the computational cost is to be
as small as possible. The (uncontrolled} local rounding
errors are characterized by the fixed double numerical
precision, corresponding to 15 decimal mantissa digits of
the employed HP-Workstation. In applications concerning
(5.1),
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(i} we chose y, on a Poincaré-map [16] defined by
y2— =0, then

(ii) we determined the first intersection, ¥,,., of ¥ with
¥, — y; =090, and then

(iti) we returned ¥ from j,

it

through replacing ¢ by —¢.

We observed cases where || § — yoli.. reached a minimum
less than 10~ for the returning difference approximation j
and cases where this distance was large. The latter cases can
presumably be explained by diversions of 7. For a fixed
choice of the initial vector and the time ¢, the observed
diversions were absent when a sufficiently extended number
format was used. Here, too, the presence or absence of
diversions is unpredictable.

W. Espe [13] has used a Runge—Kutta-Fehlberg method
of order eight with control of 4 [5, 43] to approximate the
periodic orbit y* depicted in Fig. 4. He chose v, as the
midpoint of the interval in (7.1). For 4, as given in (7.2), the
difference 4, —1>0 is relatively large, thus indicating a
“strong instability.” Consequently,

(a) after one revolution past yF, Espe’s approximation
# did not return te y, within graphical accuracy,

(b) a diversion must have occurred in the execution of
the second revolution (here || y*(¢) — 7(7)]|, is smaller than
in the case depicted in Fig. 5), and

(¢) in the execution of the six revolutions depicted in
Fig. 6, an aperiodic curve was generated which resembles
those proclaimed to indicate “chaos” in the non-mathemati-
cal literature, see Fig. 7.

The details of the curve in Figs. 6 and 7 are as unpredictable
as the strange attractor of the Lorenz equations [40].

The details of the aperiodic orbits computed by us or by
W. Espe depend unpredictably, on the employed computer,
compiler, number format, numerical method, and its
artificial parameters.

25. 1

17. -

3.
-16. -12. -8. -4. 0. 4 8 12 16.

FIG. 6. Projection into y,-p,-plane of approximation § of T-periodic
orbit y} (see Fig. 4) by use of a Runge-Kutta-Fehlberg method of order
eight: the computed difference approximation diverts (Lorenz equations).
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124

TIME
0 2T 4 6 8 10 12. 14 16

FIG. 7. 7, from Fig 6 as a function of time 7.

8. CONCLUDING REMARKS

For the restricted three body problem, the existence of
diversions of computed difference approximations has been
verified in Section 5, topographical properties favoring the
occurrence of diversions are discussed at the end of
Section 3, with a distinction of types (I} and (1I) of “cause
and effect” For the Lorenz equations and their topo-
graphically complicated strange attractor, in Section 7 the
conjecture is offered that the cause of the observed diver-
sions of type (Il) is associated with the stable and the
unstable manifolds of the origin. There are the following
analogous situations:

(i) stable and unstable manifoids of periodic solutions
of ODEs, such as the ones which have been verified by
Kiihn for the Lorenz equations, see Section 6, and

(ii) stable and unstable point sets of spurious constant
difference solutions (stationary points} or spurious periodic
difference solutions.

For the actual occurrence of diversions in these cases, exam-
ples are not known. In case (ii), a diversion would be caused
by local rounding errors and, if present, procedural errors.
The discussions at the end of Section 7 suggest that diver-
sions may be caused by arbitrarily small (and even single)
local numerical errors. This smallness may be achieved by
the employment of difference methods with a sufficientiy
small choice of the step size # or a sufficiently large choice
of the order p, provided the numerical precision is chosen
accordingly; see examples at the end of Section 7.

Now, evolution problems with nonlinear PDEs are
considered. Frequently in engineering or the sciences, a
corresponding initial boundary value problem is replaced as
follows by an approximating IVP:

(a) the dependency of the true solution on the spatially
independent variables is suitably approximated, while

(b)

Concerning (a) and (b), in particular, the following
methods are customarily used:

the dependency on time 7 is retained from the PDEs.
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(al) a longitudinal method of lines (e.g., [49]), or
(a2) a method of finite elements (e.g., [4]), or
(a3} aspectral method (e.g., {8]), or

(a4) a Fourier expansion of the dependent variables in
the case that the nonlinearities in the PDEs are confined to
products of the dependent variables (e.g., [8]).

In each one of these cases, (al}{ad) and (b), an IVP is
generated, with a system of noniinear ODEs. A discretization
of any such IVP may then lead to diverting difference
approximations. In Section 7, this is shown for the Lorenz
equations which, by means of (a4), have been derived from
the nonlinear PDEs of fluid mechanics {34].

At numerous places in Sections 5 and 7, the observed
diversions of difference approximations are characterized as
“unpredictable.” On first glance, this seems to be a con-
tradiction to the well-known deterministic properties of
both hardware and software of any computer. In contrast,
the qualitative properties of sets of computed approxima-
tions are not known in advance. If they are unexpected, they
are unpredictable. Usually it is expected that the distance
between the (unknown}) true solution y* and the computed
approximation j shrinks as either the step size # decreases
or the order p increases. Concerning the (time¢ of the)
occurrence of a diversion, this expected pattern is not pre-
sent in the case of discretizations of the Lorenz equations in
Section 7.

This is not surprising because of the details of

()
(8) the subsequent effect, ie., the actualization of the
diversion in a perturbation-sensitive neighborhood.

the cause of a potential diversion and

Concerning (), it 1s sufficient to refer to the large number
of individual computational operations involved in the
execution of an individual time step of a difference method.
The (vectorial) superposition of the results of these opera-
tions is practically unprediciable. Consequently, this is true
for the local continuation of the approximation J from the
execution of one time step to the next.

Concerning (), it is observed that strange attractors are
believed to consist almost everywhere of locally divergent
sets of orbits, e.g,, [19, 20]. .

The large number of practically unpredictable contribu-
tions suggests a random character of the computed
approximations y. In fact, Sparrow characterizes this
situation as follows:

[40,p, 6]: “our approximate solution..
randomly from one of these orbits to another”,

to jump

[40, p. v]: see the quotation at the end of Section 6;
[40, p. 208 ]: “‘chaotic,’ ‘turbulent,” or ‘pseudo randem’

LT

behaviour which we associate with a ‘strange attractor’.

Accordingly, Wedig [50] has carried out stochastic
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investigations of sets of computed approximations § in
strange attractors.

Concerning “chaotic structures” of sets of computed
approximations 7, the examples in Sections 5 and 7 suggest
a superposition of the causes (A) and (B) which are intro-
duced at the end of Section 3. In the context of O DE-Chaos
{A) refers to the sensitive dependency on y, of the true
solutions y* = y*(r, y,) of the ODEs. In the context of
computational chaos, cause (B) refers to the influence of all
kinds of local numerical errors in the computational deter-
mination of the approximations y. A knowledge of a set of
approximations j does not allow a distinction of the
contributions from (A) and (B).

This leads to the following final conclusions:

(1) Concerning a quantitatively reliable information
on individual true solutions y* in a “chaotic set,” enclosure
methods are the only practically available approach, unless
a first integral of the ODEs is known.

(II) An unknown but presumably large portion of the
published results on “chaotic sets of solutions of ODEs” is
more concerned with computational chaos than with
ODE-chaos.

APPENDIX: DERIVATION OF (6.2)-(6.4)

By means of the transformation

Z:=e"y,,

X =ey,, Y :=¢e'y,, (A1)
the Lorenz equations (5.1) can be represented as
X' =get" "1y, (A2)
Y =e'~(r—eMZ)X, (A3)
Z'=elt-o- i yy, (Ad)
If 5 =20, then Z' = XX '/o; hence,
Z=X*26+c¢ with ceR (AS)
Then, from (A2) and (A3),
Y.' = (e(l——cr)l X'/O')"
="YX (r—(e”"20) XP —e¥c)  (AS)
and, therefore,
X' +(1-a)X =cX(r—(e ¥26) X*—e " %c). (A7)

Going back to the original variables, (AS) yields (6.3) and
(A7) yields (6.2). Since all employed transformations are
free from any conditions, the systems (6.1) and (6.2)-(6.4)
are equivalent, provided b = 2¢.
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